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Abstract Time scrics from various Tields such as geophysics, meteorology, hydrology, air pollution are often intermitient and
display fong-range dependence. This paper develops a new class of stochastic modeis to represent such propertics. An eflicient
cstimation procedure is outlined and tested on two concentration time series collected in an environmental wind tunnel. These
time series simulate two different types of odour sources and possess quite different statistical properties that are well described

by the new model.

1. INTROBUCTION

Long-range dependence {(LRD) is characterised by slowly
decaving serial corrclations so that the awtocorselation
function of the time serics is not abselutely smmmable. The
pragence of long-range dependence invalidates many of the
sraditional approaches of daia description using ARMA
models (Beran {1992}

Another dominmt feature of fwrbulent time series is thely
intermittency, which is traditionally described by the rate of
dissipation of kinetic cnergy. Ameodo et ol (1992), Farge
{1992), and Davis ef al. {1994} advocated the usc of wavelet
anabysis in studying intormitlency. But, as apparent in the
numerical resulls of Arneodo er al (1992, difficuliics are
inherent in this wavelct approach.

Aparl from some allempls based on stochzastic differential
cgquations, most recent studios bave been gearcd towards
analysis of twbulent systems rather than building explicit
models for prediction of future behaviour of these systems. A
notable example is the investigation of zero-crossings of the
wavelet transform of {urbulence timg series, resuliing in a
scafe-space representation of the time series {see Arneodo ef
al. (1992}, Farge (1992). The ropreseniation  gives
information on the singularities of the tme series across
scales, which helps understanding the undorlying generating
process but does not yvield 2 model for s prediction. In this
paper, we shail pay attention to developing explicit models
for describing simultancously LRD and intermiliency in
turbulent time serics. These models can be used directly for
prediction purposes.

In BSection 2, we define the concepts of LRD and
intermittency in terms of the spectral density of the stochastic
process. An appropriate form of the spectral density is then
used to model LRD and intermiftency simuiianecusly. In
Section 3. a discrete approximation for the models is
obtained. In Section 4, we give a fast algorithm to sstimate
all the paramelers of the resulting discrete model. As an
example of application of the method, we analyse two odour
records simulated in the Monash University experimental
wind tunnel.

i, LONG-RANGE DEPENDENCE AND

INTERMITTENCY

A stochastic process  A7H s said o exhibit LRD GF i
spectral density has the form
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densily has an integrable singularity st the origin i
0 < < ¥, with the characteristic effect that the covariance
function of A7 decays to zere al a very slow rate.

— 1 as w— 0 forany >0} The spectral

LRD is o contribution (o the process from the low-lrequency
components  of the spectrum. On  the olber  hand,
intermittency is a contribution to the process from the high-
frequency  oomponenis  of the spectrum. These  latter
components are very irregular. Their scatering effect vields a
positive dimension to their inverse image. Berman {1972)
showed that i 378 has continuous sample paths and if
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For X)) stationary and crgodic, the conditions (2.2) and

(2.4} imply, with e = fJ,
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Since intermiftency can be viewed as the crossings at a
certain Ievel X(I' = X. the resulis (2.5) and (2.6) suggest
that the parameter « can be used as an indicator of the
degree of intermittency of the process A7t). A special spectral
density featured in the work of Berman (1972) is
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It can be shown that f (w) of (2.7) satisfics conditions
(2.2) and (2.4). In view of (2.1) and (2.7}, we shall consider
spectral densities of the form

(2.8}
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to model LRD and intermitiency simuliancously. The term
b s included in the denominator of {2.8y t0 enhance
stationarity and o indicate the local selfssimilarity of the
process, When b =0, the process is selfesimilar,

3. STOUCHASTIC MOBELS

In this section, we obtain a discrele approximation 1o the
spectral densily {2.8) with & — 0. We first consider an
appreximation when @ —> 0, which is relevant for LRD.
The intermittency components have little confribution to the
spectrum at yery low frequencies (near 0). Hence we may put

a=10 in (2.8 as @—{, and the spectral density
becomes
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It follows that X717 may not be stationary: but the related
process
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is stationary and its spectral density
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approximates (3.1} closely as @ > 0. The discreie process
which arises from ¥t by periodic sampling will now have 2
spectral ciensity which is the Peisson sum of (3.3), that is,
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Noling that rimemF :48111‘5“) @' as w— 0, the

resull (3.4) suggests the approximation
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Omn the other hand, the intermittency in (2.8) significs 2 high-
frequency behaviour of the process. Thercfore, we shall
consider &  discrele  approximation  of (2.8} in oz
neighbourhood of @ = wand put J=1 in (2.8) 25 LRD has
little contribution at these frequencies. The spectral density
of the discrete process which arises from (2.8) by periodic
sampling will now have the form
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As a vesult, we shall consider the [lollowing discicie
approximation 10 (2.8), with & > 0, in a acighbourhood of
o=
& ; )
a8 folwl = —, 0<|f<1, O<y<i.
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The approximations (3.5) and (3.8)
model for LRD and intermitiency:
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The speciral density (3.9 can be extended o include an

suggest the following

f’if*f(p) component to model short-memory features of the
Lime-series:
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which is the speciral density of the discrete process generated
by the fractional difference equation:
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where B is the backshifl operator X, = X, L and £ is

- . - . il
while noise with variance .

4, PARAMETER ESTIMATION

This section gives a method 1o estimate the parameter vector
W (gi, By,p.8,...0 0") of model (3.10). This is

po
carrizd out in the following stages:
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(i) Prefiminary estimation of the LRD parameter J
| . 4 5

Denote the spectral density of the series V), = (1-8) X,
by f}.(a)).Thcﬂ

i) -~
“n fp aﬁm}! j,.(m}, a E[-—fc‘,ﬁ],
which yields
“2)

n J (@) =1n /,(0) = dlnfi— "] +1n

o
P
)
=

AEEA)

where fﬁ( } is an estimator of fD(a}) For a time series

of length 7. denote the Fourier frequencies by
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smooth and bounded near @ = 0. As a result, we can
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(ify Preliminary estimation of the inlermittency
parameters & and ¥

In view of the form {3.11}, we denote the spectral density of

the series {/, 2{1“ 6BY X, by ]rU{a)) Then
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{iiiy Estimation of the AR parameters

[nitially, suppose that the model order p is known. We are
ied to minimise
‘ ! {(Fl ::
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forany 4 & and ¥, an AR{p) model can be fitted to the
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using the Durbin-Levinson recursion. Since this recursion is
very fast for each d £ and ¥, we can estimate 4 & and
¥ by a gradieni-based optimisation procedure. inilial
estimates of & & and ¥ are given by stages (i) and i)
above. As the model order p  is not known, iU must be
estimated from data. Following Anh and Kavalierls (1994},
we base model sclection on the concept of minimum
description Iopgth due to Rissanen {1989). This leads o an
approximation of the log likelihood by
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where 0’ .0, 18 the prediction variance estimated in {4.0),

3+ 5, - 15 the number of model parameiers.
EXE

Algurithm

Step 1, Taper the data after corecting for the wmean
Append at least . + 1 zeroos do the data fo obtain the
series

. Xy, =17
K= o y
0, t=7T+1....7

Step 2. Compuie the periodogram
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For efficient computation of the fast Fourier transform, 17
should be a power of 2,

Step 3. Compute dis of {4.3) using least squares. Then
assuming that » = 7, use the Durbin-Levinson recursion (o

gstimate the ARr) parameter as a first estimate of 0 by
computing

- (,{ 7 Z! {CJ }‘l - 'Zde’mmﬂ £=00,

the covariances for the process 1, = {i - B‘)d“}"{, . Given the

initial value of &, an initial value for 5 can be obtained
using the least squarces estimate of (4.5).
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Step 4 For any vaies of 4.0 gnd ¥ . computs
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using the fast Fourier transform. Use the Durbin-Levinson
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recursion to estimaie the AR/ parameters G0, and
prediction  variance Ty from the covariances

rag k). k=00, p. Selecl Paa, 1o minimise (4.7} for
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Step 5. Repeat Step 4 for a series of values of {d.0.7)

near {dls,@,}?’”} and select (d‘ﬂ,ff\j 10 minimise
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This step is done using 2 downhill simplex method, 2

computationally casy and failsafe way of non-lingar

minimisation.

Step 6. After calculating the estimaled vaiues of (aﬂ a7},

the value of o can be cstimaated from the non-lincar

equation 4o +8a+3 1 _ using  an
Gor ™ (1—'2!9&‘05{%-!—02)?

algorithm that is a combination of the bisection method and
the Newton-Raphson method. This hybrid fechnigue takes a
bisection slep whenever the Newlon-Raphson would take the
solution out of the given bounds, or whenever the Newion-
Raphson is not converging quickly encugh.

5. NUMERICAL RESULTS

The wind tunnel at Monash University was commissioned 1o
carry out simuiations of concentrations 1o represent odours
emanating from a piggery instaliation for a number of source
characteristics.  Two of the chosen source configurations
were ap area source (fypically 100 x 100 my} Fepresciiing
around slurry spreading, wasie ponds o large sheds, lecated
in flat terrain, and a tall poist source unaffecled by
turbulence from nearby buildings. The time series for these
two source configurations for a downwind distance of 1000m
are shown in Figure 1. The dominant characierislics obvious
from these plots are the presence or absence of meandering
and the intermittent nature of the concentrations. From
Figure 2, which shows the autocorrelation function up 0 8
lag of 150, it appears that a model including long-range
dependence would be appropriate. In order {o quantify long
range dependence and inlermitioncy, we use the method
outlined in the previous sections.

The resulis of running the algorithm on the two smmulated
data series is shown in Table 1. Figare 3 shows the fog of the
spectral density of the raw point sousce data and compares
this 1o the log of the speciral density after the removal of the
estimated model.  Figure 4 shows the fog of the speotral
density of the raw area source daia and compargs this to the
iog of the spectral density after the removal of the cstimated
model.

5, COMCLUSIONS

This paper introduced a new class of stochastic models based
on established theories to represent time series which exhibit
jong-range dependence and intermittency simultancously. An
efficient Heralive method was developed to estimate all the
model parameters from observed daa. These models can be
used direcily for prediction purposes. The pumerical resulis
on two odour lme series with guite different degrecs of
intermiliency  indicated  that  the models  are  fully
jmpiementable and useful in describing turbulent time scries.
Detailed siatistical results and an extensive simulation study
confirming the power of the method are reported in And of
af. (1995) and Lunney and Anh (1 94933

7. REFERENCES

Anh, V.V, and L. Kavalicris, Long-range dependence in
models for air quality, in Statistics fn Ecology aned
Fnviroamenial Mopitoring, D.J. Fleicher and B.F.J
Manly {Fds.y. Dunedin: Universidy of Oago Press, pp
100-200, 1994,

Aph V.V, KB Lunney and 5. Peiris, Statistical analysis of
time  series  with  long-range  dependence  and
mermitiency {(submitied toJ. Forecasting).

Arncodo, A, F. Argoul, E. Bacry, 1. Blezgaray, E. Frevsz, G
Grassea, JF. Mugzy and B Pouligny. Wavelel
ransform of fractals. in Wovelets and Applications,
Meyer, Y. (Ed.). Masson, pp. 286-352, 1992,

Beran, J.. Statistical models for dala with iong-range
dependence. Stanistical Science 4, 304-27, G992,
Berman, S.M., OGaussian  sample  functions: Uniform
dimension and Holder conditions aowhere. Nagov

Math. J. 46, 6380, 1972,

Davis, A., A. Marshak and W. Wiscombe, Wavelet-based
muilifracial  anadysis  of  nonsstationary  and/or
intermitlent  geophysical signals, in Haveleis in
Geophysics. Fouloula-Georgiou, Eoand P Kumar
{Eds.}, Academic Press, 1994,

Farge, M.. Wavelet transforms and their applicaiions 1o
urbulence. Amur, Rev. Fluid Aech. 24, 395-457,
1992,

Lunuey, IE. and V.V, Anh, Time series with long-range
dependence and intermiitency: A simulation study
{submitted to Coppnunications in Staiisties).

Rissanen, 1., Stochastic Complexity in Statistical Ingiiry.
Singapore: World Scientific, 1988

R ACKNOWLEDGEMENTS

The authors wish to thank Chris Walson and Poter Best of
Katesione Scientific for computing assistance and general
comments respectively, The wind funnel stulations werc
carricd out by Monash University as parn of a project
sponsored by the Environment Protection Authority of New
South Wales. The work is partially supported by ARC grant
AGDS3]T724,



Table 1

Data

i

Area
Source

ot

Point
Source

0.0316
0.0015
! 0.05331
[ -£.0032
| 00012
| 0.0626

\

| 0

| -0

|0

f

| 0

{ 5
") (\007
’]

1008
goarl
i

BROCI

ryy

(¢

e ‘nC having sou

JOINL SGUICe

ton tor the data senesa) as
T cownwind of 4n aren sourcs

e correianen fine

COAMD oy



Figure 3 Spectral density plots for the series representing concentrailons messured 1000 m
) downwind of a point source with (a) the log of the spectral densuy oi the raw data. (b3
the log of the spectral density of the raw scries alter removal of the estinaied model

Figure 4 Spectral density plots for the series Epreseniing concenualions measured 1000 m

downwind of an area source with (a) the log of the speciral density of the raw data, ()
the log of the spectral density of the raw series atier removal of the sstimated model,




